Two-photon optical interrogation of single dendritic spines with caged dopamine

Roberto Araya, Victoria Andino-Pavlovsky, Rafael Yuste, and Roberto Etchenique

ACS Chem. Neurosci., Just Accepted Manuscript • Publication Date (Web): 14 May 2013
Downloaded from http://pubs.acs.org on May 14, 2013

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Two-photon optical interrogation of single dendritic spines with caged dopamine

Roberto Araya&†, Victoria Andino-Pavlovsky, Rafael Yuste*&& and Roberto Etchenique*##.

Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2 AR1428EHA Buenos Aires, Argentina.

& Dept. of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY USA 10027

† Present address for R.A.: Département de Physiologie, Université de Montréal, 2960 Chemin de la Tour, Montréal, Québec H3T 1J4, Canada.

KEYWORDS Dopamine, Ruthenium, two-photon, Caged Compound

ABSTRACT: We introduce a novel caged dopamine compound (RuBi-Dopa) based on ruthenium photochemistry. RuBi-Dopa has a high uncaging efficiency and can be released with visible light (blue-green) and IR light in a two-photon regime. We combine two-photon photorelease of RuBi-Dopa with two-photon calcium imaging for an optical imaging and manipulation of individual dendritic spines in living brain slices, demonstrating that cortical dendritic spines can express functional dopamine receptors. This novel compound allows for the mapping of functional dopamine receptors in living brain tissue with exquisite spatial resolution.

Dysfunction of dopaminergic neurotransmission in the CNS underlies a variety of neuropsychiatric disorders, including social phobia, Tourette's syndrome, Parkinson's disease, schizophrenia, neuroleptic malignant syndrome (NMS), attention-deficit hyperactivity disorder (ADHD), and drug and alcohol dependence. Dopamine transmission in the brain is mediated by a family of G protein-coupled (GPCR) dopamine receptors named D1 to D5. The D1 receptor has been implicated in motor function, cognition and reward. Its high levels of expression in several brain regions - including the prefrontal cortex - are contrasted by the low expression levels of D5 dopamine receptors in multiple brain regions, including pyramidal neurons from prefrontal cortex. However, how dopamine receptors modulate information flow in neuronal circuits, neurons and synapses is still poorly understood. In fact, there is no unified agreement as to how dopaminergic inputs function and even whether they have an inhibitory or excitatory role on CNS circuits. Understanding these controversies is fundamental to explain why dopaminergic inputs selectively target different brain areas, different neurons and different postsynaptic sites.

The lack of tools to study dopaminergic inputs with single synaptic resolution has made it difficult to dissect their role at a single neuronal/synapse level, address fundamental questions on the diversity of dopaminergic inputs and their interaction with excitatory and inhibitory ones. Thus, to study the local function of dopaminergic inputs, it would be ideal to have a highly localized method to activate noninvasively dopamine receptors with a spatial resolution of the size of single synapse.

Local activation of receptors in living neurons can be achieved by two-photon photorelease (uncaging) of caged compounds, since two-photon opto-chemical tools can be used in highly scattering media, such as brain tissue, and afford a spatial resolution of the order of 1 µm. With two-photon uncaging one can control a given neurotransmitter’s physiology and precisely probe the dendritic (or axonal) tree of a neuron, mapping its functional inputs. Indeed, two-photon uncaging of glutamate has revolutionized our current understanding of excitatory transmission and integration in mammalian neurons. Using a similar strategy, in this paper we introduce RuBi-Dopa, the first two-photon caged dopamine compound based on Ruthenium-bipyridine chemistry, and use it to optically activate dendritic spines.

The complex [Ru(bpy)3(PMe3)(Dopa)](PF6)2 (bpy = 2,2’-bipyridine, PMe3 = trimethylphosphine, is a crystalline orange solid synthesized from [Ru(bpy)3Cl3] in two steps (see supporting information). It is soluble up to 5 mM in water at pH=7 and is stable in solution at 37 °C below pH=8 (although dopamine can be oxidized by air at higher pH). Its 1H-NMR spectrum shows the 16 characteristic peaks of bipyridines, corresponding to an asymmetric cis complex and the aromatic signals of the coordinated dopamine (Figure S1. See supporting information).

Figure 1 shows the aliphatic portion of its 1H-NMR before (top trace) and after 30 seconds in-situ irradiation (bottom trace) with a green LED array (λ = 525 nm, 20 nm FWHM, p = 150 mW). Before irradiation (top trace), the doublet at 0.95, that corresponds to the coordinated trimethylphosphine (PMe3), is evident. In addition, the triplets A1 and A2 at 3.52 and 2.70 ppm respectively, are characteristic of a coordinated amine group. The presence of A1 and A2 in D2O indicates that NH3 cannot exchange protons, and therefore the ligand is indeed coordinated through its amine - as is usually the case in Ru-bpy complexes.
Figure 1. Structure (inset) and aliphatic section of the 1H-NMR spectra of RuBi-Dopa in D$_2$O before (top trace) and after (bottom trace) irradiation into the NMR tube with a 525 nm green LED. The doublets below 1.2 ppm belong to coordinated trimethylphosphine (PMe$_3$) in RuBi-Dopa (top trace) and in the aquo-complex formed after photoreaction (bottom trace). Signals of coordinated dopamine (B and C) are also apparent. The triplets A$_1$ and A$_2$, corresponding to the coordinated –NH$_2$ disappear after irradiation due to rapid exchange with D$_2$O. The signals of the free dopamine methylenes (B’ and C’) are indicative of the successful photorelease of the ligand.

Furthermore, the adjacent methylenes are strongly shifted to higher fields due to the proximity to Ru$^{2+}$, and appear as multiplets (Figure 1, signals B and C at 2.30 and 1.78 ppm, respectively). After irradiation the compound successfully photoreleases dopamine. The signals B and C, corresponding to the coordinated ligand, disappear, and the two methylene signals of the free dopamine (B’ and C’) appear at 2.77 and 3.13 ppm respectively. Further addition of dopamine confirmed that the identity of the photoproduct is exclusively this neurotransmitter, and that ligand degradation did not occur throughout the photolysis (data not shown). Moreover, in the aromatic region of the NMR spectra after irradiation we found the peaks corresponding to the formed aquo-complex [Ru(bpy)$_2$(PMe$_3$)(H$_2$O)]$^{2+}$ and the rest of the dopamine protons (Figure S1, see supporting information), further corroborating the irradiation-induced transition from coordinated-to-free dopamine.

The complex shows the typical metal-to-ligand charge transfer band (1MLCT) found in all the Ru(II)-bipyridyl complexes. Irradiation on this band populates the 1MLCT state, which further decays to a 3MLCT state that can deactivate through emission, or to a dissociative d-d state that promotes the loss of monodentate ligands24 and the exchange for solvent molecules. In the case of RuBi-Dopa, the only photoproduct detected was dopamine (Figure 1 and Figure S1).

The quantum yield of dopamine photouncaging was measured using UV-Vis spectrum analysis of aqueous solutions. Spectra between 350 and 700 nm were obtained during irradiation at right angle with a 405 nm laser diode. The samples were irradiated at open air and not degassed.

The differential amount of products can be calculated with the following expression:

$$\frac{dn_p}{dt} = I_{beam} \cdot \left(1 - 10^{-A_t}\right) \frac{A_R}{A_t} \Phi_{pr}$$

where n_p are the moles of released aquo-complex and dopamine; I_{beam} is the intensity of the laser in Einsteins/s; A_t and A_R are the solution's total absorbance and the reactant's absorbance, respectively; and Φ_{pr} is the photoreaction quantum yield.

Integration of Eq. (1) was done by a finite differences method. In brief, for an experiment lasting about 1000 seconds, a measurement every $\Delta t = 2$ seconds was performed. Introducing the values of volume, initial concentration of RuBi-Dopa, molar absorptivities of RuBi-Dopa and its photoproduct and laser power, the amount of photolized complex were calculated for the first interval Δt using Eq. 1. The new concentration values of RuBi-Dopa and the generated aquo-complex and their respective absorbanes were obtained using Beer's law and used to calculate the next intervals. The photorelease quantum yield Φ_{pr} is an adjustable parameter. In this way, not only the initial slope is used to fit Φ_{pr}, but the entire set of data, including those in which the absorption of the product is important. Figure 2 (inset) shows a subset of the data during photolysis. The obtained photorelease quantum yield is $\Phi_{pr} = 0.119 \pm 0.011$ (p < 0.05) at 37°C and 0.085 ± 0.004 (p < 0.05) at 25°C.

Pinnick and Durham have studied the correlation between the photorelease quantum yield and the MLCT band maximum for several Ru-bpy complexes, finding that both parameters are controlled in a simple way: by the donor ability of the ligands. For an MLCT band centered near 450 nm, a Φ_{pr} around 0.1 is expected, in agreement with our experimental results. Similar values were obtained using 450 nm and 532 nm irradiation. With its molar absorptivity of about 4900 M$^{-1}$ cm$^{-1}$ at 447 nm, the complex shows very high uncaging sensitivity (PH > 580) in the visible light region.

![Figure 2. Uv-vis spectra of a 75 μM aqueous solution of RuBi-Dopa during photolysis at T=25°C and pH=7. Samples were irradiated at 405 nm and spectra collected from 350 to 700nm. Inset: quantum yield calculation using Eq. (1).](image-url)
activity of RuBi-Dopa and its two-photon absorption capabilities, we used a solution of RuBi-Dopa, contained in a fluorescence cuvette (1 cm optical path), that was irradiated with an Ti-Sapphire pulsed laser (frequency $f = 80$ MHz, pulse width $\tau = 100$ fs, $\lambda = 800$ nm, average power = 460 mW) and focused on the sample with a 10x objective. With this technique, we found that RuBi-Dopa follows the typical behavior of a two-photon absorption process with emission only at the focal point.

In addition, by using a parametric amplifier (Coherent Legend Elite $f = 1$ kHz, $\tau = 120$ fs, $\lambda = 800$ nm, average power 730 mW, beam diameter 3 mm FWHM), the instantaneous power of the pulses (6.1×10^7 W) were sufficient to excite RuBi-Dopa without any focusing. Under these conditions, the progress of the photoreaction can be followed from the rather weak fluorescence emission of RuBi-Dopa at ~ 630 nm (Figure 3). We measured 18 consecutive times the fluorescence emission band of RuBi-Dopa (Figure 3), and the peak emission at 630 nm used to calculate the time dependence during photolysis (Figure 3, inset). Being the excitation of RuBi-Dopa at 800 nm, the emission at much higher energies is indicative that a nonlinear process is involved. In addition, by varying the laser power with a reflective filter, to values between 730 and 360 mW, the photolysis rate showed a dependence with the square of the average power, typical of a two-photon excitation regime (Figure S2, supporting information). On the other hand, irradiation in the same conditions using a 810 nm, 1.1W LED (Shenzhen Hanhua Opto Co, HH-1WP2IR12-T) did not show any photolysis, ruling out the possibility of detectable linear excitation at this wavelength.

By comparing of the photolysis $t_{1/2}$ of a solution of RuBi-Dopa with a solution of the analog complex RuBi-Glutamate, which is known to present a functional cross section of 0.14 GM at 800 nm, the same parameter for RuBi-Dopa can be calculated. If the complex concentration, laser power and irradiation volume are kept constant, then the following expression holds:

$$
\sigma_{2}^{\text{dopa}} \phi_{\text{dopa}} = \sigma_{2}^{\text{glut}} \phi_{\text{glut}} t_{t/2}^{\text{glut}} = 0.24 \pm 0.04 \text{GM}
$$

Being the quantum yield of photorelease of RuBi-Glutamate somewhat higher than that of RuBi-Dopa, this result suggests that the higher functional cross-section is due to a higher two-photon absorption.

Figure 4. RuBi-Dopa uncaging onto dendritic spines. (A) RuBi-Dopa is bath applied to a cortical slice and a layer 5 pyramidal neuron is loaded with 200 µM Fluo-4 Ca$^{2+}$ indicator and 200 µM Alexa-488. Scale bar = 1 µm. (B) Experimental configuration: a Ti-Sapphire laser (820 nm) scans the spine head (at approx. 5-8 mW laser power on sample) first to monitor basal Ca$^{2+}$ concentrations at the location marked with a circle in (A) and then moved to a nearby location (square), where the laser power is increased (to approx. 25 mW on the sample) to uncage dopamine from RuBi-Dopa for 4 ms. After uncaging the laser goes back to initial power and location on the spine head. (C) Spine fluorescent signals (bottom traces; individual traces in gray ($n = 10$), average trace in bold black and ± StErr traces in black) showing a sudden increase of Ca$^{2+}$ concentration after the two-photon uncaging of dopamine. The middle trace shows the uncaging pulse. The fluorescent signal detection, by a photomultiplier tube (PMT), was blocked for a few ms before, during and after the uncaging pulse with the use of an ultrafast shutter (top trace) to prevent potential PMT saturation and errors in signal detection.

Once determined that RuBi-Dopa is active in two-photon regime, it can be used to perform an optical interrogation of a 3-D neuronal tissue. Using acute coronal slices of mouse prefrontal cortex, whole-cell patch-clamp recordings from layer 5 pyramidal
cell somata were performed. Dendritic spines (less than 1 μm head diameter) from basal dendrites were selected and placed near or at the center of the microscope field. Since the activation of D1 receptors can trigger intracellular Ca$^{2+}$ signals in cortical neurons, two-photon imaging of spine Ca$^{2+}$ dynamics were performed, after injecting into the cell 200 μM of the calcium indicator Fluo-4 in combination with 200 μM of Alexa-488 to reveal the spine structure (Figure 4A).

A 300 μM RuBi-Dopa solution was applied to the bath and a Ti-Sapphire pulsed laser (Coherent Chameleon Ultra II, f = 80 MHz, τ = 140fs) with a high numerical aperture objective (60×, 0.9NA, water immersion objective) was used at 725 nm to image the spine and uncover its morphological features. The wavelength was switched to 820 nm to uncage RuBi-Dopa right next to the spine head (red dot in Figure 4) and monitor spine head Ca$^{2+}$ accumulations before and after RuBi-Dopa uncaging (Figure 4, green dot).

Uncaging experiments were performed in neurons clamped at a resting potential of -65mV, and bathed at 37 °C. The amount of current needed to hold the layer 5 pyramidal neurons at this resting potential did not differ before and after bath application of RuBi-Dopa (data not shown). These results suggest that the cell is poorly affected, if at all, by the presence of RuBi-Dopa in the bath. A 4 ms two-photon irradiation pulse right next to the spine head elicited the release of dopamine from the RuBi-Dopa complex and a rapid increase in spine Ca$^{2+}$ concentration in 11 of 13 spines tested (for one responsive spine, see example on Figure 4), indicating both the successful photorelease of dopamine and the presence of functional dopamine receptors on the spine, as suggested by previous studies of D1 receptor immunoreactivity. Indeed, addition of the specific D1 receptor blocker SCH 23390, at a concentration previously shown to be specific for D1 receptors in these neurons, completely blocked the evoked spine Ca$^{2+}$ signals recorded after uncaging of RuBi-Dopa (Figure S3. See supplementary information). Interestingly, in only 2 of the 13 spines tested, no Ca$^{2+}$ signals were observed at the spine head after the two-photon uncaging of dopamine, suggesting that not all the spines in layer 5 pyramidal neurons have functional dopamine receptors. Simultaneous current clamp measurements demonstrated that the Ca$^{2+}$ release in the spine does not induce important voltage changes into the cell soma (see supporting information for details), and therefore the dopaminergic activation of spines would go unnoticed with electrophysiological techniques.

These results demonstrate the capability of RuBi-Dopa as a tool for activating single spines, which arises from its two-photon sensitivity, a characteristic that just a few caged compounds have. We have performed and optical activation and functional optical measurement of various spines after two-photon uncaging of RuBi-Dopa. However, our experiments required the injection of the Ca$^{2+}$ indicator via the recording patch electrode. Thus, in order to perform a full-opto functional mapping of dopaminergic transmission at a single spine level one can combine the use of RuBi-Dopa uncaging and a neuronal-specific genetically encoded calcium indicator (e.g. GCaMP). By using these techniques it is possible to by-pass the invasive characteristics of standard electrophysiological techniques.

At the concentration of RuBi-Dopa used in this study, we did not observe any morphological or functional deleterious effect in the spine functional and morphological characteristics (marked by the reliability of the calcium responses) nor any damage of the spine head after two-photon uncaging of RuBi-Dopa. It is possible that the lack of acute phototoxicity at the cellular and single spine level could be due to the fact that no radicals are generated in the photoreaction of RuBi-Dopa, since the Ru-N bond is cleaved heterolytically, yielding two entire molecules. However, we cannot completely rule out a potential toxicity effect in experiments at longer time courses.

In conclusion, we have devised caged dopamine (RuBi-Dopa), a novel tool for opto manipulation and investigation of dopaminergic transmission of a subcellular neuronal entity—a single dendritic spine— with high spatial and temporal resolution by means of two-photon uncaging. Chemically, this is the first design of a two photon active caged-dopamine. Biologically, this is the first proof of principle that dopamine can be released with two-photon precision in single dendritic spines—the main receptacles of excitatory information in the brain—yielding local Ca$^{2+}$ response. This novel compound together with state-of-the-art techniques such as two-photon excitation and calcium imaging allows the mapping of functional dopamine receptors in brain tissue with exquisite spatial resolution in a noninvasive way.

Supporting Information

Synthesis of the complex, 1H-NMR spectra during photolysis and additional neurophysiological data are included in the supporting information. This material is available free of charge via the Internet at http://pubs.acs.org

ACKNOWLEDGMENTS

R.E. is staff of CONICET. This work was made with funding from CONICET, UBA, ANPCyT, R.A. and R.Y. were supported by the Kavli Institute for Brain Science, ARO MURI W911NF-12-1-0594, NEI, NINDS, NIHM, NIDA, Keck Foundation and NARSAD.

REFERENCES

The complex \([\text{Ru(bpy)}_2(\text{PMe}_3)(\text{Dopa})]^{2+}\) delivers the neurotransmitter dopamine to single spines after irradiation with an infrared TiSa laser in 2-photon regime, and elicit \(\text{Ca}^{2+}\) response in the activated spine.