Fluorescent Ligands and Energy Transfer in Photoactive Ruthenium–Bipyridine Complexes

Guillermo Carrone, Federico Gantov, Leonardo D. Slep, and Roberto Etchenique*

Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, AR1428EHA Buenos Aires, Argentina

Supporting Information

ABSTRACT: Ruthenium bis(bipyridine) complexes have proved to be useful as phototriggers for visible and IR-light photodelivery of molecules. They usually expel one ligand heterolytically upon absorption of blue or green light. However, their absorption capabilities at wavelengths longer than 500 nm are poor. Through coordination of fluorescent ligands to the Ru center, it is possible to establish an energy transfer pathway that allows these kinds of complexes to extend the range of photoactivation up to yellow wavelengths. We introduce a study of this effect in several complexes of the family using a modified Rhodamine as fluorescent ligand with different coordinated linkers. The observed trends show that a rational design of fluorophore-enhanced Ru-bpy phototrigger is possible and that photolysis efficiency can be increased by choosing the right combination of ligands.

INTRODUCTION

The photochemistry of ruthenium(II) polypyridines constitutes the base of several molecular systems. Among them, the collection of solar energy, and the photodelivery of biomolecules and drugs are two of the more promising applications.

One of the more profusely studied polypyridines, the complexes of the form [Ru(bpy)2L1L2]+ (bpy = 2,2′-bipyridine), from now on called “Ru-bpy”, present a very interesting photochemistry: Irradiation of a Ru(II)→ MLCT band of the Ru-bpy 1MLCT state (located usually in the blue range of the spectrum) populates this excited state, which decays to a rather long-lived 3MLCT. From this triplet a nearby 3MC dissociative state becomes thermally accessible, usually yielding a free monodentate ligand and a Ru-bpy aquo or solvento complex.4–15 Being an activated pathway, the energy difference between the MLCT states and the 3MC state determines the efficiency of the photolysis. Pinnick and Durham demonstrated a strong correlation between the 3MLCT band position and the quantum yield of photoaquation. This fact implies that although it is possible to tune the MLCT band to be absorptive in the green or yellow region of the spectrum by changing the ligands, the obtained complex will have a very low photolysis quantum yield.

Caged compounds, molecules that can release a fragment that has biological activity, constitute important tools in the field of cellular physiology.16–22 Traditional caged compounds, based on organic photoprotective groups, need a pulse of UV light to release the desired biomolecule.23–25 The use of UV light on biological systems not only introduces a potentially deleterious perturbation but also generates two-sided problems: the need of expensive quartz optics and the low penetration depth of short-wavelength light. Scattering in biological tissues is a big issue, and it scales with the fourth power of the photon frequency.26 Thus, a 532 nm (green) photon has a penetrance about 5 times deeper than a 360 nm (UV) photon. Ru-bpy caged compounds can be triggered with blue light, and their absorption extends to the green region (540 nm). However, for any Ru-bpy complex with high enough photorelease quantum yield the absorption at these long wavelengths is low, implying that high concentrations of the complex and/or high light intensities will be mandatory for many applications. In brief, long wavelength absorption comes with low efficiency.

In recent works it was shown that it is possible to avoid this problem by means of a different approach: keeping the absorption band in the blue region, guaranteeing a high quantum yield of photolysis and using a coordinant fluorophore as ligand, with high absorptivity at long wavelengths and high emission quantum yield. The first report of such a compound was [Ru(bpy)3Cl(RhodB-MAPN)]+ (RhodB-MAPN = RhodamineB-methylaminopropionitrileamide), which releases the fluorescent ligand RhodB-MAPN upon irradiation with green light, enhancing the photoprocess efficiency up to 24 times with respect to an analogue complex lacking the fluorophore.27 The next step was done recently by Bonnet et al. using the slightly different complex [Ru(bpy)(tpy-Rhod)(Hmte)]2+ (tpy-Rhod = 2,2′,6,2″-terpyridine, 4′-N-methyl RhodamineB-amide ethyl ether; Hmte = 2-(methylthio)ethanol) who demonstrate that it is possible to release a monodentate ligand by irradiation on the band of the Rhodamine-modified terpyridine. The quantum
yield of photorelease is almost invariant with the wavelength, extending the activity of the Ru complex to the yellow region. Both findings suggest that the position of the fluorescent ligand and its exact distance to the Ru center can be varied without loss of the energy-scavenge properties, and that a family of different Ru-bpy complexes having fluorophore-enhanced photoactivity can be produced. In this article, we start this work with a systematic study of the photophysical and photochemical properties of complexes of the form [Ru(bpy)$_2$(F)(L)]$^{+}$, with F being a fluorescent molecule, modified to allow coordination to Ru, and L being a nonfluorescent ligand.

EXPERIMENTAL SECTION

All reagents were commercially available and used as received. Ru(bpy)$_2$Cl$_2$ was synthesized according to the literature. 29 All reagents were commercially available and used as received.

EXPERIMENTAL SECTION

Syntheses. [Ru(bpy)$_2$(L)Cl]$^+$ for L = Rhod6G-4Pic, Rhod6G-1,3DAP, and Rhod6G-1,2DAE.

One hundred milligrams of Ru(bpy)$_2$Cl$_2$ was dissolved in 10 mL of methanol and refluxed for 3 h to form [Ru(bpy)$_2$(H$_2$O)Cl]$^+$. The solution was filtered to remove any solids and 1.1 mol equiv of the corresponding ligand was added. The solution was heated at 60 °C in a water bath. The formation of the complex [Ru(bpy)$_2$(L)Cl]$^+$ was determined by UV–vis spectroscopy. After 2 h, no further changes were observed and the spectra correspond to that of the desired complex. The solution was evaporated at reduced pressure until minimum volume and 2–3 mL of acetone was added. After cooling to RT, the complex was precipitated by the addition of diethyl ether under continuous stirring. It was washed several times with diethyl ether and dried protected from the light.

L = Rhod6G-1,3DAP 1H NMR (CDCl$_3$) δ 1.06 (m, 3H), 1.25 (t, 3H, J = 6.9 Hz), 1.31 (t, 3H, J = 7.3 Hz), 1.8 (s, 3H), 1.82 (s, 3H), 2.83 (dt, 1H, J = 15.1, 4.5 Hz), 3.18 (m, 4H), 3.27 (t, 1H, J = Hz), 3.42 (m, 1H, J = Hz), 3.53 (br s, 1H), 3.60 (br s, 1H), 3.71 (d, 1H, J = 7.1 Hz), 3.74 (d, 1H, J = 7.1 Hz), 4.86 (br t, 1H, J = 10.4 Hz), 5.61 (s, 1H), 5.91 (s, 1H), 6.23 (s, 1H), 6.29 (s, 1H), 7.00 (d, 1H, J = 7.8 Hz), 7.03 (t, 1H, J = 6.7 Hz), 7.15 (t, 1H, J = 7.2 Hz), 7.33 (d, 1H, J = 5.5 Hz), 7.49 (m, 2H), 7.65 (m, 2H), 7.69 (d, 1H, J = 7.6 Hz), 7.77 (t, 1H, J = 8.2 Hz), 7.80 (t, 1H, J = 5.5 Hz), 7.98 (d, 1H, J = 5.5 Hz), 8.03 (t, 1H, J = 8.2 Hz), 8.14 (d, 1H, J = 8.2 Hz), 8.20 (t, 1H, J = 8.2 Hz), 8.32 (d, 1H, J = 8.2 Hz), 8.93 (d, 1H, J = 8.2 Hz), 9.13 (d, 1H, J = 8.2 Hz), 9.54 (d, 1H, J = 5.5 Hz), 9.97 (d, 1H, J = 5.5 Hz).

[Ru(bpy)$_2$(4PAA)Cl]$^+$PF$_6$. One hundred milligrams of Ru(bpy)$_2$Cl$_2$ was dissolved in 10 mL of methanol and refluxed for 3 h to form [Ru(bpy)$_2$(H$_2$O)Cl]$^+$. The solution was filtered to remove any solids, and 1.1 mol equiv of the corresponding ligand was added. The solution was heated at 60 °C in a water bath. The formation of the complex [Ru(bpy)$_2$(L)Cl]$^+$ was determined by UV–vis spectroscopy. After 2 h, no further changes were observed, and the spectra corresponded to that of the desired complex. The mixture was evaporated at reduced pressure until 0.5 mL water (5 mL) was added, and the solution was precipitated with an excess of a 0.5 M solution of KPF$_6$ in water. The solid was washed several times with cold water and dried. 1H NMR (acetone-d$_6$) δ 1.93 (s, 3H), 4.35 (d, 1H, J = 15.2 Hz), 5.1 Hz), 4.40 (d, 1H, J = 15.2 Hz), 7.24 (d, 2H, J = 6.5 Hz), 7.29 (t, 1H, J = 6.5 Hz), 7.37 (t, 1H, J = 7.1 Hz), 7.63 (br s, 2H), 7.71 (t, 1H, J = 6.5 Hz), 7.77 (d, 1H, J = 5.5 Hz), 7.88 (t, 1H, J = 6.7 Hz), 7.90 (t, 1H, J = 7.3 Hz), 7.92 (t, 1H, J = 7.4 Hz), 8.10 (d, 1H, J = 5.8 Hz), 8.18 (t, 2H, J = 7.8 Hz), 8.55 (d, 1H, J = 7.8 Hz), 8.59 (d, 1H, J = 7.8 Hz), 8.62 (d, 1H, J = 7.8 Hz), 8.66 (d, 1H, J = 5.5 Hz), 8.72 (d, 1H, J = 7.8 Hz), 10.06 (d, 1H, J = 5.5 Hz).

Rhod6G-4Pic. Eighty milligrams of Rhodamine 6G was dissolved in 2 mL of dry DMF. Forty microliters of 4-picolylamine was added and the solution stirred at 50 °C during 48 h. The ligand was precipitated by pouring the solution over 20 mL of water at 0 °C. 1H NMR (CDCl$_3$) δ 1.33 (t, 3H, J = 7.0 Hz), 1.76 (s, 6H), 3.20 (q, 4H, J = 7.0 Hz), 3.47 (broad s, 2H), 4.27 (s, 2H), 5.99 (s, 2H), 6.27 (s, 2H), 6.90 (d, 2H, J = 6.0 Hz), 7.08 (d, 1H, J = 7.0 Hz), 7.49 (m, 2H), 7.99 (d, 1H, J = 7.0 Hz), 8.16 (d, 2H, J = 5.6 Hz). Yield 67%.

Rhod6G-1,2DAE. The same procedure was followed, but 1,2 diaminoethane was used instead of 4-picolylamine. 1H NMR (CDCl$_3$) δ 1.33 (t, 6H, J = 7.2 Hz), 1.91 (s, 6H), 2.37 (t, 2H, J = 6.8 Hz), 3.17 (t, 2H, J = 6.8 Hz), 3.21 (m, 4H), 3.51 (broad s, 2H), 6.23 (s, 2H), 6.35 (s, 2H), 7.06 (d, 1H, J = 5.2 Hz), 7.47 (m, 2H), 7.93 (d, 1H, J = 5.2 Hz). Yield 65%.

Rhod6G-1,3DAP. The same procedure was followed, but 1,3 diaminopropane was used instead of 4-picolylamine. 1H NMR (CDCl$_3$) δ 1.17 (m, 2H), 1.33 (t, 6H, J = 7.2 Hz), 1.90 (s, 6H), 2.46 (t, 2H, J = 6.3 Hz), 3.20 (t, 2H, J = 6.9 Hz), 3.21 (m, 4H), 3.5 (broad t, 2H, J = 4.8 Hz), 6.22 (s, 2H), 6.35 (s, 2H), 7.05 (d, 1H, J = 7.2 Hz), 7.45 (m, 2H), 7.9 (d, 1H, J = 7.2 Hz). Yield 61%.

4PAA. Two hundred microliters of 4-picolylamine was stirred in a test tube. Two hundred and fifty microliters of acetic anhydride was added; the mixture increased its temperature and turned brownish. After 10 min, 2 mL of methanol was added and dried under reduced pressure at RT in a rotary evaporator. The solid was extracted with CH$_2$Cl$_2$ from H$_2$O three times. The three organic phases were combined and dried. 1H NMR
Becke functional of Lee, Yang, and Parr formalized as the B3LYP functional.\(^\text{27,28}\) For the energy transfer to be possible, some overlap between the emission spectrum of the ligand and the absorption of the Ru-bpy center must be present. The calculation of the molar absorptivity of the ligand and the absorption of the Ru-bpy center must be measured independently. The fact that the molar absorptivity of the ligand and the absorption of the Ru-bpy center must be measured independently. The fact that the molar absorptivity of the ligand and the absorption of the Ru-bpy center must be measured independently.

The analysis of the electronic structure was complemented with time-dependent (TD)DFT computations including up to 100 states of the same multiplicity as the ground state for \([\text{Ru(bpy)}_2\text{pyCl}]^+\) (py = pyridine) and 200 states for \([\text{Ru(bpy)}_2(\text{Rhod6G-4Pic})\text{Cl}]^+\). The molecular orbital picture as well as the electronic spectra were computed at the gas phase geometry of each species, though solvation effects in solution (a mixture of ethanol and water) were introduced employing the PCM approximation, as implemented in Gaussian 09.\(^\text{30}\)

RESULTS AND DISCUSSION

With a few exceptions, fluorescent molecules are not good ligands for Ru(II) complexes. In particular, Ru-bpy complexes establish strong coordination with aliphatic amines, amines, pyridines, nitriles, thiolates, thioethers, phosphines and other sulfur and phosphorus derivatives. However, carboxylates, anilines, and phenolates, which often are present in fluorescent molecules, are easily displaced by water as ligands even at room temperature. Because of this fact, the first step to develop a fluorophore capable to act as a ligand in a Ru-bpy complex implies a chemical derivatization.

Reverse FRET\(^\text{39}\) is probably the key mechanism by which fluorescent rhodamines transfer the captured energy to Ru-bpy centers.\(^\text{27,28}\) For the energy transfer to be possible, some overlap between the emission spectrum of the ligand and the absorption band of the Ru-bpy 1MLCT band must be present. The synthesized Rhodamine amides can exist in two main fluorescent forms: a fluorescent, open form and a nonabsorptive, nonfluorescent closed spirolactam. The switching between these two forms depends on the solvent and on the acidity of the medium (Figure 1b). In aqueous solution the spirolactam is the prevalent species at pH > 5. In EtOH/H\(_2\)O 70:30 v/v solutions, the open fluorescent form can be easily formed by adding a strong acid to 10 mM. While the conversion from the nonfluorescent form to the fluorescent form can be easily formed by adding a strong acid to 10 mM.

1,3DAP. In every case, an amide bond is formed between the benzoic moiety of the Rhodamine and the amine group of 4-picolylamine (4Pic), 1,2-diaminoethane (1,2DAE) or 1,3-diaminopropane (1,3DAP), respectively. This reaction is very simple and efficient and has been proved for a number of primary amines.\(^\text{40}\)

The synthesized Rhodamine amides can exist in two main forms: a fluorescent, open form and a nonabsorptive, nonfluorescent closed spirolactam. The switching between these two forms depends on the solvent and on the acidity of the medium (Figure 1b). In aqueous solution the spirolactam is the prevalent species at pH > 5. In EtOH/H\(_2\)O 70:30 v/v solutions, the open fluorescent form can be easily formed by adding a strong acid to 10 mM. While the conversion from the spirolactam to the open form takes several minutes after acid addition, the reversion to the nonfluorescent form by adding a base appears as instantaneous at the UV–vis measurement time scale.

This behavior allowed us to measure the absorption of both the Rhodamine and the 1MLCT band of the Ru-bpy core by adjusting the acidity of the medium.

Figure 1a shows the structures of Rhodamine 6G and its derivatives Rhod6G-4Pic, Rhod6G-1,2DAE, and Rhod6G-1,3DAP. In every case, an amide bond is formed between the benzoic moiety of the Rhodamine and the amine group of 4-picolylamine (4Pic), 1,2-diaminoethane (1,2DAE) or 1,3-diaminopropane (1,3DAP), respectively. This reaction is very simple and efficient and has been proved for a number of primary amines.\(^\text{40}\)

1,3DAP. In every case, an amide bond is formed between the benzoic moiety of the Rhodamine and the amine group of 4-picolylamine (4Pic), 1,2-diaminoethane (1,2DAE) or 1,3-diaminopropane (1,3DAP), respectively. This reaction is very simple and efficient and has been proved for a number of primary amines.\(^\text{40}\)

The synthesized Rhodamine amides can exist in two main forms: a fluorescent, open form and a nonabsorptive, nonfluorescent closed spirolactam. The switching between these two forms depends on the solvent and on the acidity of the medium (Figure 1b). In aqueous solution the spirolactam is the prevalent species at pH > 5. In EtOH/H\(_2\)O 70:30 v/v solutions, the open fluorescent form can be easily formed by adding a strong acid to 10 mM. While the conversion from the spirolactam to the open form takes several minutes after acid addition, the reversion to the nonfluorescent form by adding a base appears as instantaneous at the UV–vis measurement time scale.

This behavior allowed us to measure the absorption of both the Rhodamine and the 1MLCT band of the Ru-bpy core by adjusting the acidity of the medium.

Figure 1a shows the structures of Rhodamine 6G and its derivatives Rhod6G-4Pic, Rhod6G-1,2DAE, and Rhod6G-1,3DAP. In every case, an amide bond is formed between the benzoic moiety of the Rhodamine and the amine group of 4-picolylamine (4Pic), 1,2-diaminoethane (1,2DAE) or 1,3-diaminopropane (1,3DAP), respectively. This reaction is very simple and efficient and has been proved for a number of primary amines.\(^\text{40}\)

The synthesized Rhodamine amides can exist in two main forms: a fluorescent, open form and a nonabsorptive, nonfluorescent closed spirolactam. The switching between these two forms depends on the solvent and on the acidity of the medium (Figure 1b). In aqueous solution the spirolactam is the prevalent species at pH > 5. In EtOH/H\(_2\)O 70:30 v/v solutions, the open fluorescent form can be easily formed by adding a strong acid to 10 mM. While the conversion from the spirolactam to the open form takes several minutes after acid addition, the reversion to the nonfluorescent form by adding a base appears as instantaneous at the UV–vis measurement time scale.

This behavior allowed us to measure the absorption of both the Rhodamine and the 1MLCT band of the Ru-bpy core by adjusting the acidity of the medium.

Figure 1c shows the general structure of the studied complexes: the two bipyridines are in cis position, and the
fluorescent ligands are coordinated by the basic nitrogens of the linkers (pyridinic or aliphatic).

The complex cis[Ru(bpy)₂(Rhod6G-4Pic)Cl]⁺ can be obtained by heating a methanolic solution of the precursor cis-[Ru(bpy)_2(HCl)]⁺ with a little excess of Rhod6G-4Pic and further purification (see experimental section). The product can be used directly as a model for photolysis. Figure 2 shows the UV–vis spectrum of the complex [Ru-

![Figure 2. Absorption spectra of a solution of [Ru(bpy)₂(Rhod6G-4Pic)Cl]⁺ in EtOH/H₂O 70:30 v/v after acidification with HCl(c). After 20 min the ligand H-Rhod6G-4Pic is completely in its open form, showing a high absorption at 534 nm.](image)

Ru and Rhod6G-4Pic can be regarded in our time scales as stable (t₁/₂ ≈ 2.7 h under 10 mW irradiation).

Once determined that the two photoprocesses can be separated, a complete study of the first photoaquation was conducted in neutral and acidic media. The photolysis of solutions of [Ru(bpy)₂(Rhod6G-4Pic)Cl]⁺ in neutral EtOH/H₂O 70:30 v/v to yield [Ru(bpy)₂(Rhod6G-4Pic)(H₂O)]²⁺ during irradiation at three different wavelengths is depicted in Figure 4a. Besides 532 nm, which corresponds to the second harmonic Nd:YAG laser, the two wavelengths of the widely used solid-state laser diodes, 445 and 405 nm were used. This election corresponds not only to the main activity range of the studied compounds but also to the cheapest options available for any low-power laser application. The inset shows a subset of spectra obtained. The isosbestic point shows that just one colored product is formed: the aqua complex at 476 nm that appears at the expense of the initial band, corresponding to the open-form Rhodamine 6G. Its quantum efficiency was measured using Rhodamine 6G as a standard and resulted to be also 0.95 within the uncertainty of the measurement (1%).

The high fluorescence of H-Rhod6G-4Pic drops dramatically after coordination to the Ru-bpy center to form [Ru(bpy)₂(H-Rhod6G-4Pic)Cl]⁻. Its fluorescent quantum yield changes from φ_f = 0.95 to φ_f = 0.02. When a solution of the complex is irradiated with 400–550 nm light the fluorescence increases with time, as can be seen in Figure 3.

This photolysis shows two processes with very different time constants (at constant light power, it means two different photolysis efficiencies). The fitting of the whole curve allows the determination of the quantum yields of the two processes: \(\phi_{P1} = 9 \times 10^{-3} \) and \(\phi_{P2} = 1.7 \times 10^{-5} \). The UV–vis spectra of the formed species after the first photoproces is almost complete shows that the first process involves the release of chloride to form the aqua complex [Ru(bpy)₂(H-Rhod6G-4Pic)(H₂O)]⁻. In this complex the overlap between Rhod emission and ³MLCT Ru absorption is somewhat lower due to the UV-shift of the latter band, and therefore, some increase in fluorescence is expected. The second process, which accounts for the 94% of the increment in fluorescence, corresponds to the photouncaging of H-Rhod6G-4Pic yielding the free ligand and [Ru(bpy)_2(H₂O)]⁻. The extremely low efficiency of this second photoreaction implies that the separation of both processes is very easy and that the coordination bond between

![Figure 3. Fluorescent emission of a solution of [Ru(bpy)₂(H-Rhod6G-4Pic)Cl]⁺ EtOH/H₂O 70:30 v/v acidified with HTos (p-toluenesulfonylic acid) during photolysis at 532 nm. Inset: Enlarged plot of the first 120 s showing the first photoprocess. \(\lambda_{ex} = 532 \text{ nm, } \lambda_{em} = 550 \text{ nm, and } c_{Rhod} = 2 \times 10^{-5} \text{ M.} \)](image)
While the slopes are lower at 405 and 445 nm, indicating a solution, the curve at 532 nm shows a dramatic increase in absorption. Bearing a Fluorophore Ligand \([\text{Ru(bpy)}_2(4\text{PAA})\text{Cl}]^+\) in Neutral and Acidic EtOH/H_2O 70:30 v/v, at Three Different Wavelengths: 405, 445, and 532 nm. Inset: several absorption spectra during the photolysis at 532 nm. (b) Photolysis of solutions of \([\text{Ru(bpy)}_2(\text{H-Rhod6G-4Pic})\text{Cl}]^{2+}\) in EtOH/H_2O 70:30 v/v containing 10 mM of \([\text{Ru}^2+\) neutral \(33.7 \pm 0.0\) and \([\text{Ru}^2+\) acid \(17.6 \pm 0.0\) in acidic solutions, in which most of the photons are absorbed through the Rhodamine ligands, shows that direct irradiation on the \(3\text{MLCT}\) band is a more efficient way to promote photolysis at short wavelengths. The quantum yields at acidic solutions (Rhod\(^*\) \(\rightarrow\) \(3\text{MLCT}\) energy transfer) are about a half of those of the quantum yields in neutral solution (direct \(3\text{MLCT}\) irradiation). However, at the longest wavelength (532 nm) the molar absorptivity of the open form of RhodG-4Pic is around 20 times higher than that of the Ru band, and therefore, the overall efficiency (measured as the product \(\epsilon\phi\)) is more than 7 times higher, implying a huge enhancement of the characteristics of Ru-bpy complexes as photodeliverers of molecules.

As a second comparison, useful to separate the intrinsic effects of the pH on the photoactivity from the effect of the direct (MLCT)/indirect (Rhod ligand) capture of the photon, we have obtained the values of \(\psi\) for the analogue complex \([\text{Ru(bpy)}_2(4\text{PAA})\text{Cl}]^+\) (4PAA = 4 picolylacetylamide). This complex shares the same coordination group (picoline) but the fluorescent Rhodamine is replaced with an acetamide group. (Note that we have chosen to study the expulsion of chloride ion, which does not present dissociation changes with pH. This allowed us to separate the effects that could arise from ligand recaptation. Other usual ligands that can be protonated, as amines, pyridines, etc., could show additional variation of \(\psi\) with pH.)

The figures for photolyses at every wavelength, in neutral and acidic EtOH, are all very similar (\(\psi \approx 3 \times 10^{-2}\)) and slightly higher than that of the \([\text{Ru(bpy)}_2(\text{Rhod6G-4Pic})\text{Cl}]^+\) at neutral pH. This suggests that the key factor that determines the value

| Table 1. Quantum Yield \(\psi\) and Photolysis Efficiency \(\epsilon\psi\) of the Complex \([\text{Ru(bpy)}_2(\text{Rhod6G-4Pic})\text{Cl}]^+\) and Its Analogue Not Bearing a Fluorophore Ligand \([\text{Ru(bpy)}_2(4\text{PAA})\text{Cl}]^+\) in Neutral and Acidic EtOH/H_2O 70:30 v/v, at Three Different Wavelengths |
|------------------|------------------|------------------|------------------|
| | \(\psi \times 10^3\) | \(\psi \epsilon \times 10^3\) | \(\psi \epsilon \times 10^3\) |
| \([\text{Ru(bpy)}_2(\text{Rhod6G-4Pic})\text{Cl}]^+\) neutral (closed Rhod) | 31.9 \(\pm\) 2.0 | 24.9 \(\pm\) 2.6 | 187 |
| \([\text{Ru(bpy)}_2(\text{Rhod6G-4Pic})\text{Cl}]^+\) acid (open Rhod) | 13.3 \(\pm\) 0.9 | 9.4 \(\pm\) 0.6 | 83 |
| \([\text{Ru(bpy)}_2(4\text{PAA})\text{Cl}]^+\) neutral | 33.7 \(\pm\) 2.0 | 32.7 \(\pm\) 4.4 | 246 |
| \([\text{Ru(bpy)}_2(4\text{PAA})\text{Cl}]^+\) acid | 37.6 \(\pm\) 4.0 | 29.6 \(\pm\) 4.5 | 223 |

\(\epsilon\psi\) is the product of the molar absorptivity of the open form of Rhod6G-4Pic \(\epsilon\) and the quantum yield \(\psi\) of the Ru-bpy complex.\(\psi\) is the fraction of photons absorbed that are recaptured.

\(\epsilon\psi\) is the fraction of photons absorbed that are recaptured.

\(\epsilon\psi\) is the product of the molar absorptivity of the open form of Rhod6G-4Pic \(\epsilon\) and the quantum yield \(\psi\) of the Ru-bpy complex.\(\psi\) is the fraction of photons absorbed that are recaptured.
of the quantum yields is the energy transfer pathway and not the acidity of the medium, at least within the range studied.

From all these measurements the whole picture of the behavior of Ru-bpy complexes bearing fluorescent Rhodamine ligands appears: the quantum yields of photorelease when the primary absorption operates through the ligand are about 0.4 times the yields corresponding to direct 1MLCT absorption. This result, in agreement with previous findings, indicates that the overall efficiency of energy transfer from Rhod ligand to the 1MC dissociative state is less than unity. At least two reasons can be thought to be responsible for this energy loss: the energy transfer efficiency Rhod → 1MLCT is around 40% or the specific 1MLCT state (or substates) that is populated through this indirect mechanism does not always lead to the loosening of the Ru–Cl bond.

Some insight on this question can be obtained by measuring the quenching of the ligand Rhod6G-4Pic due to the presence of the MLCT band of the Ru-bpy center in different situations. From the complete photolysis in acid EtOH of the complex [Ru(bpy)2(Rhod6G-4Pic)Cl]+ to yield the bis-aqua complex [Ru(bpy)2(H-Rhod6G-4Pic)Cl]2+, it is possible to determine the degree of primary energy transfer, considering that this is the only photophysical process that influences the quenching. On this basis, the fluorescence of the free ligand (ΦF ≈ 0.95) decreases at least 55-fold (ΦF ≤ 0.018) when it is coordinated to the chlorido complex. That means that the reverse FRET from the Rhod donor to the Ru-bpy acceptor in [Ru(bpy)2(Rhod6G-4Pic)Cl]+ is around 98% (almost ideal) and that the reduced yield of photoaquation would be due to a decay path that does not lead to the proper symmetry of the 1MC state populated after the FRET. Other possibilities, as an increased deactivation through nonradiative processes arising from the vibrational modes of the rather big Rhod6G-4Pic ligand, seem improbable given the fact that the complex bearing the closed form of the ligand does not exhibit this lower photoactivity.

Once having the big picture of fluorophore-enhanced photorelease, we performed density functional theory (DFT) electronic structure calculations in order to provide some insight into the electronic structure, the electronic spectroscopy, and the nature of the lower energy excited states. The use of (TD)DFT has given a clear insight into the rules that underlie the photochemistry of Ru-bpy complexes. However, the modeling of asymmetric complexes of the form [Ru(bpy)2(L1)-Cl]- is largely 1MLCT with L1 ≠ L2 has been barely studied. As a starting point, the monocatic species [Ru(bpy)2(py)Cl]+ was chosen as the most simple Ru-polypyridine fragment related to the actual species explored in this article.

Geometry Optimization, Molecular Orbital Diagram, and Electronic Spectrum Analysis. A full geometry optimization in vacuo without any symmetry imposed constraints of this species rendered a Ru(II) center in a pseudo-octahedral environment comprising six N atoms and a chloride, represented in Figure 5a. The Ru–N bond distances at 2.15 Å for the py fragment, average of 2.08 Å for the bpy N atoms, and the Ru–Cl bond length of 2.50 Å are within the expectations for this kind of system at this level of theory. The geometry resulting from a full optimization of [Ru(bpy)2(H-Rhod6G-4Pic)Cl]2+ is represented in Figure 5b. The metallic structural parameters are practically identical to those described for the simple pyridine derivative, and both Ru containing fragments can be virtually superimposed. The distance between the Ru center and the Rhodamine chromophore (measured from the geometric center of the latter) equals 12.2 Å.

Figure 6a displays a MO diagram obtained from the DFT computations, which help to establish the electronic structure for the model compound. The low symmetry of the ligand environment lifts the d-orbital degeneracy, yielding three dπ orbitals of different energy. The HOMO and HOMO − 1 are mostly the dπ orbitals of the less acceptor bpy shows up as the different bpy fragments. The lowest energy π* orbitals of the less acceptor py shows up as the HOMO + 3. Finally the eπ* set is represented by the LUMO + 9 dπ and LUMO + 11 dπ molecular orbitals sitting at 5.3 and 5.8 eV above the HOMO, respectively.

Figure 6b shows the MO diagram obtained for [Ru(bpy)2(Rhod6G-4Pic)Cl]2+. The presence of a rhodamine derivatized pyridine fragment introduces several molecular Rhodamine-centered molecular orbitals without any significant perturbation of the MO pattern on the metallic fragment. The linker between the different parts of the molecule does not allow for any electronic communication between fragments resulting in an electronic description that virtually can be decomposed into “metal-” and “Rhod-centered” MOs. The agreement in this case is very good and within the expectations for the level of theory employed for the computations. The high intensity band observed at 534 nm is predicted at 468 nm and assigned to the Rhod-centered intraligand π−π* transition. The theory suggests that the absorption pattern originating in the metallic chromophore remains virtually identical to the one in [Ru(bpy)2(py)Cl]+ except for a very small shift due to the substituent on the py ligand.
Figure 7 shows the (TD)DFT computed spectrum overlaid to the actual experimental one. A complete list of the computed transition energies, intensities, and orbital description as obtained from (TD)DFT can be found in the Supporting Information. The agreement is excellent, suggesting that the electronic picture described by the theory represents the actual physics of the system and therefore validating the theoretical approach. The computations show that the absorption observed in the visible region of the spectrum originates in metal-to-ligand CT transitions involving the different dπ and bpy* orbitals. The energy and the shape of the spectrum is well reproduced by the computations, including a noticeable tail to the low energy side of the spectrum arising from transitions that involve poorly overlapping metal and ligand orbitals.

The overlap with the emission spectrum (Figure 7c) shows that some of the low-energy transitions from the tail of the spectrum could be important for the energy transfer from Rhodamine.

The order of magnitude of the expected energy transfer efficiency can be obtained from the FRET equations set.

\[
\Phi_{\text{FRET}} = \frac{1}{1 + (r/R_0)^6}
\]
(2)

\[
\frac{R_0}{\text{nm}} = 0.02108 \left[\frac{\Phi_f}{n^2} \left(\frac{J}{\text{mol}^{-1}\text{dm}^3\text{cm}^{-1}\text{nm}^4} \right) \right]^{1/6}
\]
(3)

\[
J = \int f_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda
\]
(4)

where \(\Phi_{\text{FRET}} \) is the FRET efficiency, \(r \) the distance between donor (D) and acceptor (A), \(R_0 \) the characteristic distance of the D–A pair, \(\kappa^2 \) the dipole orientation factor, \(\Phi_f \) the quantum yield of fluorescence of the donor in absence of the acceptor, \(n \) the refractive index of the medium, \(f_D \) the normalized (area = 1) donor emission spectrum, \(\varepsilon_A \) the acceptor molar absorptivity spectrum, \(\lambda \) the wavelength in nm, and \(J \) the superposition integral of donor emission and acceptor absorption spectra.

From the minimized structure obtained from DFT calculations we estimated the D–A distance to 12 Å. However, as the Rhodamine part of the ligand Rhod6G-4Pic can possibly rotate around its aliphatic carbon–carbon bond at 4 in the pyridine ring, \(\kappa^2 \) cannot be determined, and the usual value of 2/3 for free movement was used. The overlap between D emission and A absorption is scarce, given that the maximum of D emission, corresponding to Rhod6G-4Pic ligand, is red-shifted. This gives a moderately low value of the integral \(J \approx 6.7 \times 10^{12} \text{M}^{-1}\text{cm}^{-1}\text{nm}^4 \) that corresponds to a characteristic \(R_0 \approx 3 \text{ nm} \), quite small for a typical FRET. However, as the distance between D and A is much shorter (1.2 nm), the efficiency for the energy transfer for the first step in the photochemical chain is around 0.99.
CONCLUSIONS

We have studied the photochemical properties of complexes of the form [Ru(bpy)₂(F)Cl]⁺⁺, with F being a coordinated fluorescent dye (Rhodamine-6G derivatives). In particular the absorption of photons through the dye led to photodecomposition of the extra ligand following the dissociative mechanism described originally by Pinnick and Durham.¹⁶–¹⁸ The (TD)DFT calculations show that there is no interaction between the MO pattern of the fluorescent ligand and the Ru center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center. This strongly suggests that the energy transfer is given by proximity and not through Dexter mechanisms, being the center.

ASSOCIATED CONTENT

Supporting Information

Absorption/emission spectra of Rhod6G-4Pic, Rhod6G-1,2EN, and Rhod6G-1,3DAP. Molar absorptivities of the used complexes at the irradiation wavelengths. Complete description of DFT-computed MO orbitals, energies, and transitions for [Ru(bpy)₂(H-Rhod6G-4Pic)Cl]²⁺ and [Ru(bpy)₂(Py)Cl]⁺. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*(R.E.) Phone: +54 11 4576-3358. E-mail: rober@qi.fcen.uba.ar.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the National Agency for Science and Technology Promotion, CONICET, and the University of Buenos Aires. R.E. and L.D.S. are members of CONICET.

REFERENCES

